NOT LOGGED IN!
USERNAME:         
PASSWORD:



-Anzeige-

Deutsch English SAMPLE ARTICLE      SUBSCRIPTION      Job Market      IMPRINT      INSTRUCTIONS FOR AUTHORS      BUYERS GUIDE
Media Information
Media Information Online
Profile Publications
 
Available Volumes
2005  I   2006  I   2007  I   2008  I   2009  I   2010  I   2011  I   2012  I   2013  I   2014  I   2015  I   2016  I   2017  I  

Available Issues in  2014
1  I   3  I   4  I   6  I   7  I  

----------------------------------

Volume  2014  I   Issue  4

----------------------------------

Ceramic Monographs 01/2016
Ceramic Monographs 02/2016
Ceramic Monographs 03/2016
Ceramic Monographs 04/2016
Ceramic Monographs 01/2017
Ceramic Monographs 03/2017
Ceramic Monographs 05/2017
Ceramic Monographs 06/2017

----------------------------------

Quicksearch:


 

 

 

 

 

 

 

Interceram is SCOPUS-listed!
SCImago Journal & Country Rank

  Reda, A. E. ; Ibrahim, Doreya M. ; Souaya, E. R. ; Abdel-Aziz, Doaa Abdel
Microwave Dielectric Characteristics of Calcium Titanate–Lithium Lanthanum Titanate Ceramics
Interceram 63 (2014) [4] 216-219
High-Performance Ceramics


Abstract:
The microwave dielectric characteristics, microstructure and physical properties of (1–x)CaTiO3-x(Li0.5La0.5)TiO3 (0.08?x?0.9) ceramics (abbreviated 92CT-LLT through 10CT-LLT) prepared by conventional solid-state routes were investigated. Increasing the proportion of (Li0.5La0.5)TiO3 compared to CaTiO3 decreased the sintering temperature of ceramic bodies by 50 °C, with achievement of optimum density at 1200 °C and formation of dense microstructure due to liquid phase development. In the (1-x)CT–xLLT system, the microwave dielectric properties can be effectively controlled by varying the (Li0.5La0.5)TiO3 content to form favourable secondary phase and microstructure. The best combination of microwave dielectric characteristics was obtained in samples of 50CT-LLT ceramic (x = 0.5) sintered at 1200 °C/2 h, with dielectric constant er = 14.1, low dielectric loss = 0.000021 and quality factor Q×f = 364,524 at 8 GHz.

Click page-thumbnail to open full text (pdf):
(Subscription required!)

Page 216 Page 217 Page 218 Page 219